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Interference effects on the coupling impedance of many holes in a coaxial beam pipe
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The problem of many holes in a coaxial beam pipe is studied by means of the modified Bethe theory. The
electromagnetic fields propagating in the coaxial region couple the equivalent dipole moments of the holes.
The effect of the coupling on the longitudinal impedance and on the loss factor is investigated, showing that the
interference phenomena are significant for such geomef684€63-651X97)08110-3

PACS numbes): 41.75-i, 41.20—q

- INTRODUCTION M o(2) = anl Hog(2) ~ Hey(2)],

In this paper we study the coupling impedance and the P.(z)=eadEo(z)—Es(z)], (1)
loss factor of coaxial structures with multiple pumping holes.

The analytical solution of a many-hole problem has beemwhere a,, and a, are the hole polarizabilities and, and
given in the case of a circular beam pipe with thick willf  Eg, are the scattered fields calculated at the hole center. The
the method being based on Bethe’s diffraction theory. Therimary magnetic and electric fields, generated by a point
longitudinal impedance is calculated from the coherent sunchargeq, traveling with velocityc along the axis of a per-

of the fields generated by each hole. fectly conducting pipe, are
The impedance of a single hole in a coaxial structure has _ _
been calculated numericallj2] and analytically applying Hoo(Z1) =Ho,(0)e k0%, Eq (7)) =Eq (0)e k%, (2)

Bethe's modified theory3] and by variational methodg]. _
The results obtained with these different procedures show with
good agreement.

In this paper we extfend Bgthe_’s modified theory to the Er(0)=ZoH0,(0)=Z, i 3)
general case o holes in an infinitely long perfectly con- ¢ 27b
ducting coaxial pipg€Fig. 1). The reaction fields have to be
considered in order to fulfill the energy conservation law. In general the scattered fields can be expressed as a su-
We evaluate the effect of the interference of the fields genP€rPosition of modes. The coefficients of the modal expan-
erated by the equivalent dipoles taking into account also th&/on are determined through the Lorentz reciprocity principle
coupling among the dipoles. The self-consistent solutio 5] they are linear funcnons of the equwglent d|p9le mo-
shows that the coupling between holes can affect signifi-ments _Of the_ apertures which can be obtained solvinla 2
cantly the radiated energy spectrum and the coupling imped- ZC')\I S'Zetﬂ Ilnear.sylstetm(.jl | ts h b deter-
ance. The reaction fields introduce in fact a coupling be- . nce the equivalent dipole moments have been deter
tween the equivalent dipole moments of different holes. mined, using the definition of the longitudinal impeda6p

In Sec. Il we outline Bethe's modified theory applied to 1 [+
the calculation of the longitudinal impedance. Impedance z(w)z——J E,(r=0)elko%dz, (4)
and loss factor are treated in Sec. Ill. Finally, in Sec. IV, we qJ-=

compare our results to those obtained with theriA simu- ) _ _
lation code. it is straightforward to derive a general expression of the

longitudinal impedance foN holes centered ia=z;,

N
w”Z 1 .
Il. GENERAL THEORY Z(w)=] 27qulo El . M (z)+ P, (z) |eMo5. ()
. . . . =

The general theory adopted in our calculation is described
in [3,5]. For the sake of convenience, we summarize its im-
portant features at frequencies below the beam pipe cutoff
considering only scattered TEM-type fields.

Bethe's diffraction theory states that each hole is equiva- .'
lent to an electric and a magnetic dipole whose moments are @ - ﬂ
given by

*Corresponding author. FIG. 1. Relevant geometry.
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w .
an=i 3 amphi e kzzl 4 5

. . W .
bin=sgr(i —h)j  hoeqre™ ol 2,

w .
Cih=] % aeeeh e M4 5 9

oin being the Kronecker symbol.

System(8) can be solved directly by inversion of the co-
efficients’ matrix or by some iterative procedure. Since we
are interested in the low frequency behavior of the imped-
ance below the cutoff of the TR mode, we can limit our-
selves to the first step of the iterative procedure, that is, re-
placing the electric and magnetic dipole moments in the
right-hand side of Eqs6) and (7) with their approximated
values

FIG. 2. (a) TEM field generated by an equivalent magnetic di-
pole momentM,, . (b) TEM field generated by an equivalent elec- M (2)=anHo,(2) and P (2)=gaEq(2) (10
tric dipole momentP, .
from which we derive the low frequency approximation for
Ill. HOLES IN A COAXIAL PIPE the longitudinal impedance

Each dipole moment radiates a forward and a backward
wave along the coaxial pipe. While the waves produced by
the electric and magnetic dipole have the same phase along

ko

ko
(@) =iZ0 z-zpz | Nlam+ ae) = 2oy

the beam direction, they are in phase opposition along the N—1 N—h w
Other(Flg 2) % _ 22 2 inl 2Kk 2 |
Using the expressions of the fields generated by the di- (am—ae) = =l sin 0y Tht
poles(Appendix, we can therefore write Eq¢l) as ,
k2 {NZ
N +Z0 g | = (am+ ae)?
[0} . 0 3K4 m e
M o(2) = am| Hou(2)—] 5 uh, 2 M (zy)e ol 16w biin(dib) | 2
h=1 N N-1 N-h
w N ) +E(am_ae)2+(a’m_a’e)22 E
+] 5 hogeor 2, Pr(zy)sgrih—ije lkamall, R
h=1
w
(6) xcog{ 2ko >, |hﬂ) : (12)
t=1
o N
Pr<zi>=sae{ Eo(z)—] 5 €5 2 Pr(zy)e ko=l with I=2,~2p ;.
h=1 For N equally spaced holes E¢l1) yields
N
. w N _ 2
+] 5 mhogeor 2 M (zp)sgrih—i)e Tkl Z‘I} ko
2 @ = 4 -7 0 @ IN2 2
h=1 ZRe(w) ZO 327T3b4|n(d/b) N (am+ae)
7
@) 5 SirP(Nkgl)
having indicated withe,, and ho,, the normalized modal +am—ae Sir(kgl) (12
function for the TEM mode.
Equations(6) and(7) can be summarized as and
Ain ambin Nk
o (Mw<2i>): amHoﬂi)) Zim(©)~Zo 777 (@m ) (13
EQ‘ bih Cin Pr(zi) SaeEOI’(Zi)
having neglected the frequency higher order term in the
(i,h=1,2,...N), (8) imaginary impedance. It is worth noting that the imaginary
impedance oN holes is, in first approximation, independent
where Ho,=(Ho,(z1), - .. Hoo(zn)), Eor=(Eq(z1),..., of the holes’ position, equal t times the impedance of a

Eor(2zy)), similarly for M, andP,, and single hole. The real part oscillates between
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(amt ae)z

2 2 L@ 2
+j= 0
N< and W N (14) 1 J 2 a’m/,LhO(P (M (0))
0]
times the impedance of a single hole. It is worth noting that 0 1+] @ ae€l Pr(0)
the real impedance df holes around the pipe at the same 2
is N? times the impedance of a single hole. ayHo,(0)
From Eg.(11) the loss factor for a Gaussian bunch of =( m EO‘P(O))' (16)
length o, is &etor
The real part of the longitudinal impedance is
ZOC\/; |: d k2
k(o,)= N?(ap+ a)?+ N(am— ae)? _ 0™o 2 2
(72~ T28rt In(arbyo? | (mt e T Nan™ ) ZRe= 16,907 In(dib) \“m T ¥e): (17
N—1

) —(126?)h? Replacing in Eq(16) the polarizability for a round hole,
—2(am— a) hgl (N—h)e z one finds an impedance value five times larger than that pre-
viously presented ifi3] which was affected by an oversight

|2 in the calculations. More recent results obtained by different
X|2— h?— 1) . (15  methodd 4] agree with Eq(17).
z From Eq.(15) the loss factor is
The above expression is valid for bunch lengths (b K(o,)= ZoC\/; (a2 +a?) (19)
+d)/2. For shorter bunches, higher order modes have to be 2 64n*b%In(d/bygs "M e
included in the theory.
B. Two holes
A. Single hole Here we discuss the case of two holes, to better under-
For a single hole, choosing the hole center as the origin oftand the interference and coupling effects. Choogirg0
the longitudinal axis, syster8) becomes andz,=1, the linear system for two holes becomes
LW LW » LW .
1+] 2 am/‘/hgcp J 2 athSq;e kol 0 - 2 amh0<peOre Ihof
L@ 2 Akl . @ 2 . @ ~ kol M,(0)
J 2 a’m/’“th:e o 1+] P athow J 5 a’mh0<peOre o 0 Mi(l)
koo . o) Lo . P.(0)
0 —j 2_ce hosegre™ ™ 1+ 5 aceef, j 5 aceeg e P.(I)
koo : ) . )
] ;_Ce thonre_JkoI 0 ] E a‘esegre_Jkol 1+4] E aesegr
amHO<p(0)
amHo(1)
= . 19
sareEor(0) 19
gacEq(l)

The real impedance, due to the interference between theetween the scattered fields in the coaxial pipe, maxima and
propagating reaction fields, has the following approximateminima occur at frequencies depending on the hole distance

expression: [Fig. 3b)].
The loss factor, applying Eq15), is
Zokg 2 Z C\/_
- 7 A
ZRe™ 1673p3in(d/b) 12(Amt %) k(o2 = 2 n(dib) o3 2(amt+ )+ (am— ae)?
z
+ (am— ae) [ 1+ cog 2kol )} (20)

2
_(am_ae)ze—(lz/of)(2|_2_1”_ (21)
('TZ
In Fig. 3@ we show a typical plot oZg, for circular
holes, as a function of the frequency. According to Bdj), In Fig. 4 (solid line) we show the loss factor for a=5
the real part of the impedance oscillates between 4 and 0@m Gaussian bunch, for the same geometry of Fig. 3. The
times the single-hole value. Because of interference effectisehavior of the loss factor is quite general, as we will see for
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Zgs (0ohm) C. Randomly spaced holes
0.02 . . L
- It is interesting to compare the coupling impedance and
- the loss factor ofN holes uniformly and randomly spaced.
0.015 k- To calculate the impedance bf randomly spaced holes, we
s can assume in Eq11) I,=1+6,, where §, is a random
variable. Again the imaginary part of the longitudinal imped-
0.01 } ance isN times the imaginary impedance of a single hole.
- The real part is
0.005 | o) Zok2 N_ v E( e
i Rd @)= g 3pdin(alp) | 2 (AmT ) T (amTae
O I — —
0.4 0.8 1.2 1.6 2
(@) Frequency (GHz) +(am— a’e Z 2
Zgs (ohm)
0.03 — : w
s 30cm ' X cos 2kg W|+E 5h+t) . (22
0.025 - — — -15cm \ t=1
: \
0.02 |~ bunch spectrum Consequently we can calculate the loss factor, which turns
: out to be
0.015
: Zoc\ T
0.01 k(o) = 0 N2t )24 Nl e )2
E (O-Z) 1287T4b4|n(d/b)0'§[ (am ae) (am ae)
0.005 5" N1 h
0 e ‘1" i Crrad _Z(Qm_ae)ZE 2 e—(W|+sN,h’W)2/U§
04 08 12 1.6 2 24 2.8 h=1w=1
(b) Frequency (GHz) ,
(Wl+eyn-hw)
_ _ X|2————"—-1}, (23
FIG. 3. (a) Zge for two round holegb=20 mm, d=24 mm, R :

=6 mm, | =300 mm). (b) Zg for two round holes at differerit,

Gaussian bunch spectrum for=50 mm. where we have defined

the case ofN holes. It reaches a minimum value whén N~ h+w

~ ¢, while it saturates for>3¢. The minimum is caused by enehw= 2 O (24)
. . . . . t=N—-h+1

the destructive interference between fields, which surpris-

ingly occurs only for one distance between the holes. For

larger distances, the impedance has more maxima peaks ug-

der the bunch spectrum, however, since their amplitude deu

creases, the total area covered by the power spectrum e

mains almost constant.

As an example, we compare the real part of the longitu-
nal impedance for 15 round holes witk- 30 cm andéy
niformly distributed betweert 0.2. We notice that the in-
oduction of the positioning randomization clearly lowers
the peak valuegFig. 5), while it does not affect the minima
level. The loss factor, nevertheless, is almost unchanged

(Fig. 6).
k,(10° v/C)
1.6 ” IV. COMPARISON OF ANALYTICAL
14 | AND NUMERICAL RESULTS
10 3 To check the validity of the expressions found, we per-
B formed simulations with the numerical cosi@FIA [7] in the
1 E case of two hole$3]. To this end, it has been necessary to
3 slightly modify the equations to account for the wall thick-
0.8 ness which changes the problem geometry and introduces an
attenuation for the fields in the holes.
0.6 |- Calling b; andb,, respectively, the inner and the outer
- radius of the beam pipe, one can see that the fartan the

D — denominator of Eqs(12) and(15) has to be replaced by the
productb?b3. Furthermore, the polarizabilities must be cor-

FIG. 4. Two-hole loss factor(b=20mm, d=24mm, R  rected; for a round hole of radilgwe use the expressions in
=6 mm, c=50 mm. Ref.[8],
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FIG. 5. (@) Zg for 15 round holegsb=20 mm, d=24 mm, R
=6 mm, | =300 mm). (b) Zge for 15 round holes randomly spaced
with  uniform distribution —0.2<6,<0.2
=24 mm,R=6 mm, | =300 mn).
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FIG. 6. Loss factor for 15 round holes randomly spaced with
uniform distribution —0.2<6,<0.2 (b=20 mm, d=24 mm, R

Zge (0Ohm)
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whereW is the wall thicknessin our caseW=b,—b,) and

ép1andé; ; are the zeros of the Bessel functidpandJ,

respectively.

We can thus rewrite Eq20) as
, Zok3
Re™ 16m°b7b3In(d/b,)
X{2(am+ @e)?+ (am—ae) [ 1+ cog 2kgl) ]}

(26)

As a result, the loss factor becomes

Zoc\m

64m*bibsIn(d/b,) o

K(o,) = 2(am+ae)2+(z’m_z’e)2

_ 12
—(am—ae>2e—<'2’“5>( 2—2—1) . (27)

gy

In Fig. 4 the dependence of the loss factor on the hole
distancel is presented for a=5 cm Gaussian bunch. The
numerical resultgblack diamondsare in good agreement
with the analytical expressiofsolid line). The difference
between theory and simulations tends to become larger for
very short hole distances, when the coupling effect of the
evanescent modes begins to be non-negligible.

V. CONCLUSIONS

The effect of the coupling between the equivalent dipoles
seems to be important for a correct evaluation of the cou-
pling impedance and the loss factor Mfholes in a coaxial
structure.

At low frequency, the real part of the longitudinal imped-
ance grows asw?, as in the case of a single hole, being
related to the TEM mode propagating in the coaxial region.
Moreover, because of interference effects between the scat-
tered fields, the real impedance and the loss factor are pro-
portional toN2.

A randomization in the hole position can lower signifi-
cantly the peak value of the impedance while the minima and
the loss factor are almost unchanged.
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APPENDIX

A TEM field radiated by a hole centered i+ z; can be
written as

E.(2.z)=Cgiegre 1M0*" %) 0(z—z)
+doieo €07 o(—2+2),

H(2,2)) = Coiho e o= %) 9(z~z)
—doiho, € 0" o(—2z+2), (A1)

whereky= w/c, 6(z) is the Heaviside function, and
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i—-1

Zo\¥? 1 1 1 . Coi + doi
=l—| —,—=—-, hg,== A2 Es(z)=¢ coxe k@2 ———
€or 27_’_) In(d/b) r’ O¢ ZO €or ( ) sr( |) or kzl Ok
N
are the normalized modal function for a TEM wave. + 2 dereiko(z=29
.. . . ok )
The coefficientscy; anddg; are given by k=T+1
jo < ; Coi — doi
Coi :7 [MhO¢M¢(Zi)+eOrPr(Zi)]v Hs<p(zi): h0<p kzl COke’lko(Zi*ZkH— T
j N
w i .
doi=— [#ho,My(z)— e Pr(z)].  (A3) - > doeotEa ), (A4)
2 ¢ e k=i+1
When there ar®N holes radiating, the scattered fields on a Replacing Eq(A3) in Eq. (A4) one obtains Eqg6) and
generic hole center appearing in Ed) are thus (7).
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